
The clld toolkit

Robert Forkel and Sebastian Bank

Max Planck Institute for Evolutionary Anthropology, Leipzig

October 7, 2014

1 / 52



Outline

The CLLD project

The clld toolkit
The data model
ROA, REST and . . .
. . . Linked Data
Versioning, updating, preservation

Towards a domain specific API
Decoupling database and visualization
Semantic interoperability

2 / 52



The CLLD project: Overview

Funded by the Max Planck Society for 4 years.

Creates infrastructure for publishing cross-linguistic datasets,
including

I organization: a publication platform http://clld.org
supporting two publication models:

I Standalone databases following an ”edited series” model,
like WALS, WOLD, . . .

I Two journals for cross-linguistic datasets

I infrastructure: Glottolog, a language catalog and
comprehensive bibliography

I technology: the clld toolkit powering our applications

3 / 52



The CLLD project: Datasets
Typological:

I WALS - the World Atlas of Language Structures - a database of structural

properties of more than 2600 languages

I APiCS - the Atlas of Pidgin and Creole Language Structures

I SAILS - the South American Indigenous Language Structures

I PHOIBLE - a repository of cross-linguistic phonological inventory data

Lexical:
I WOLD - the World Loanword Database contains vocabularies of 41

languages from around the world annotated for loanword status

I Tsammalex - a multilingual lexical database on plants and animals

I IDS - the Intercontinental Dictionary Series (to be published in CLLD in 2014)

I ASJP - the Automated Similarity Judgement Project (to be published in 2014)

Encyclopedic:
I Glottolog - a language catalog and comprehensive bibliography

4 / 52

http://wals.info
http://apics-online.info
http://sails.clld.org
http://phoible.org
http://wold.clld.org
http://tsammalex.clld.org
http://lingweb.eva.mpg.de/ids/
http://glottolog.org


The CLLD project: WALS

5 / 52



The CLLD project: WOLD

6 / 52



The CLLD project: APiCS

7 / 52



The CLLD project: Glottolog

8 / 52



The CLLD project: AfBo

9 / 52



The CLLD project: eWAVE

10 / 52



The CLLD project: SAILS

11 / 52



The CLLD project: PHOIBLE

12 / 52



The CLLD project: Tsammalex

13 / 52



The CLLD project: Where’s my dataset?
Have a dataset in need of publication and presentation on the
web?

I Submit to Harald’s Journal of Cross-Linguistic Databases
or

I submit to Martin’s edited series of cross-linguistic
databases clld.org or

I get a seasoned python programmer for a month to build
your own app on top of the clld toolkit!
robert@astroman:/tmp/phoible$ cloc --exclude-dir=tests,data phoible/

38 text files.
36 unique files.
28 files ignored.

-------------------------------------------------------------------------------
Language files blank comment code
-------------------------------------------------------------------------------
Python 17 230 173 954
CSS 1 25 49 159
Javascript 1 1 0 0
-------------------------------------------------------------------------------
SUM: 19 256 222 1113
-------------------------------------------------------------------------------

14 / 52



The clld toolkit: Motivation

Survey databases are all alike.

Can we extract functionality needed to build WALS, WOLD, and
APiCS into a reusable piece of software?
Design goals:

I There must be a core database model, which allows for as
much shared functionality as possible.

I User interfaces of applications must be fully customizable.
I It must be easy to re-implement legacy applications using

the framework.
I Optimize for maintainability, i.e. minimize lines-of-code for

apps built with the framework.
I Find the right level of abstraction!

15 / 52



clld: A CMS for cross-linguistic data

The clld toolkit is an open source Python package hosted on
GitHub providing

I an extensible core data model
I a web application framework

I powering all CLLD databases
I providing a basic API built on Linked Data principles
I ”reference implementation” of a dataset browser
I clld apps are web applications built as small layer of code

on top of the clld framework.
I clld works with python 2.7 and 3.4 and has a test suite

with 100% coverage.

16 / 52

https://github.com/clld/clld


Intermezzo: Disambiguation

I CLLD: The project.
I clld.org: The publisher/brand.
I clld: The software, aka toolkit, aka framework.
I clld app: A web application built using the clld

framework.

In the remainder of this presentation we will talk about the latter
two.

17 / 52



clld data model: Design

The design of the data model was guided by three principles:
I All the target datasets have to “fit in” without loss.
I The data model must be as abstract as necessary, as

concrete as possible.
I The data model must be extensible.

18 / 52



clld data model: Entities
I Dataset holds metadata about a dataset like license and publisher

information.

I Language may be a languoid (Glottolog) or doculect (ASJP).

I Parameter a feature that can be determined and coded for a language –

e.g. a word meaning, or a typological feature.

I ValueSet set of values measured/observed/recorded for one language and

one parameter, i.e. the points in the Language-Parameter-matrix.

I Value a single measurement (different types of scales can be modeled using

custom attributes).

I Unit parts of a language system that are annotated, such as sounds, words or

constructions.

I UnitParameter a feature that can be determined for a unit.

I UnitValue measurement for one unit and one unitparameter.

I Contribution ValueSets can be partitioned into separate contributions

sharing provenance.

19 / 52



clld data model: Relationships

Figure 1: The default clld data model. Note: Modelling
constructions as Units and features as UnitParameters the case
mentioned by Harald fits in.

20 / 52



clld data model: Extensibility

clld uses joined table inheritance as implemented in
SQLAlchemy to provide extensibility of the core data model:

I Each core model can be specialised/customized in a clld

app, adding columns or relationships.

@implementer(ILanguage)
class Languoid(Language, CustomModelMixin):

...

I The ORM (Object Relational Mapper) transparently joins
the two corresponding tables when querying, retrieving the
specialized object, i.e. the full set of columns.

I Additional models can be added freely, reusing clld

functionality to enable functionality like versioning, etc.

21 / 52



clld data model: Lexical data

Figure 2: The WOLD instantiation of the data model.

@implementer(interfaces.IValue)
class Counterpart(Value, CustomModelMixin):

...
word_pk = Column(Integer, ForeignKey('word.pk'))
word = relationship(Word, backref='counterparts')
...

22 / 52



clld data model: Lexical data

Figure 3: Many-to-many relation between words and meanings in
WOLD.

23 / 52



clld data model: Glottolog

Figure 4: In Glottolog genealogy is implemented via a self-referential
father relation on Language.

@implementer(ILanguage)
class Languoid(Language, CustomModelMixin):

...
father_pk = Column(Integer, ForeignKey('languoid.pk'))
children = relationship(

'Languoid',
foreign_keys=[father_pk],
backref=backref('father', remote_side=[pk]))

...

24 / 52



clld resources: Overview

Data done the Web way.

clld implements a Resource Oriented Architecture.

I Data model is good basis to support shared behaviour
across apps.

I Resource concept makes model entities actionable.
I Resources are the things we describe and publish.
I Resources define the level of granularity that is of interest.

I clld knows how to display filtered lists of resources of the
same type

I and detail views of single resources.

25 / 52

http://en.wikipedia.org/wiki/Resource-oriented_architecture


clld resources: Adaption
I ZCA (Zope Component Architecture) provides machinery

to register behaviour tied to interfaces, e.g. to resources.
I Resources can be adapted to representations:

I Glottolog: Language represented as family tree in newick
format.

I ASJP: Contribution serialized in ASJP wordlist format.
I All lists can be represented as feeds.

I The web pages created by a clld app are just resources
adapted to HTML.

I These registry entries can be overridden by clld apps,
e.g. providing custom DataTables, custom map markers,
custom maps.

I Again it’s about the right level of abstraction: Writing a
clld app as declarative as possible, just implement
adapters.

26 / 52



clld resources: Adaption

Figure 5: Two adaptions of a Language object in ASJP.

27 / 52



clld resources: Extensibility

Figure 6: Tsammalex defines a new resource type EcoRegion.
EcoRegions behave just like other resources, i.e. they can be listed,
bookmarked and associated with maps.

28 / 52



clld and Linked Data

I We regard Linked Data principles as rules of best practice
for publishing data on the web.

I How do clld apps fare with respect to the five-star rating
for Linked Data?

∗ Make your stuff available on the web (whatever format).
∗∗ Make it available as structured data (e.g. excel instead of

image scan of a table).
∗ ∗ ∗ Non-proprietary format (e.g. csv instead of excel).

∗ ∗ ∗∗ Use URLs to identify things, so that people can point at
your stuff.

∗ ∗ ∗ ∗ ∗ Link your data to other people’s data to provide context.

29 / 52

http://inkdroid.org/journal/2010/06/04/the-5-stars-of-open-linked-data/
http://inkdroid.org/journal/2010/06/04/the-5-stars-of-open-linked-data/


clld and Linked Data: three stars

Make your stuff available on the web, as structured
data in non-proprietary formats.

I clld apps do just that.
I Most CLLD datasets are published under CC-BY, i.e. open,

licenses.

30 / 52



clld and Linked Data: three stars

Figure 7: The data of a WALS feature is available in various formats.
Note that the map on the page is created by calling the WALS API to
retrieve the GeoJSON representation.

31 / 52



clld and Linked Data: four stars

Use URLs to identify things, so that people can point
at your stuff.

I “People” includes yourself
I forces you to think about the things you want to describe

and at which level of granularity
I enables distributed development of data and the basis for

merging via globally unique identifiers
I puts coarse provenance information in each identifier

32 / 52



clld and Linked Data: four stars

http://wals.info/valuesets/138A-lat

Figure 8: The level of granularity of the WALS data allows to link
comments, history and examples to datapoints.

33 / 52



clld and Linked Data: 4-out-of-5 stars

Generally, the usefulness of “4-out-of-5 stars” Linked Data has
to be stressed:

I Linked Data as uniform data access API (following the
“crawler” paradigm)

I enables distributed databases,
I allows follow-your-nose API discovery (cf. REST),
I plays well with the web at large (Internet archive,

bookmarking, google, etc.),
I allows easy hosting (thus helps with sustainability, and is

attractive for developers/administrators as well) – which
cannot be said about SPARQL endpoints.

34 / 52



clld and Linked Data: API and storage format

Publishing Linked Data can be as easy as putting a bunch of
files on a web server.

I clld apps will be able to fall back to that, i.e. dumping the
resources they serve as static files by enumerating their
URL space.

I This allows for a graceful degradation of service:
I When served from the app, resources will point to a

canonical URI using the appropriate HTTP Link header.
I These URIs will still resolve in the static-files-on-webserver

scenario.
I So when served as static files from a plain HTTP server,

most things will still work

35 / 52



clld and Linked Data: the 5th star

Link your data to other people’s data to provide
context.

While HTML provides the prime example of embedding links to
provide context, for structured data and common domains RDF
models are more useful.

I Again “other people” includes yourself.
I VoID is used to convey basic provenance and license

information.
I Typically all statements of linguistic interest (i.e. value

assignments) are linked to sources.

36 / 52



clld and Linked Data: the 5th star

I Our publication platform does spit out RDF.
I The RDF model for a particular clld app can be

completely customized.
I But should it?
I Balance between

I uniform access across CLLD apps and
I semantic interoperability with existing infrastructure.
I Is it more useful to model resources as having multiple

types or provide mappings?

I Example: Model lexical data using lemon?
I Generally, in terms of user-friendliness, the problem is not

a choice of RDF models but consumable formats (csv,
Newick, . . . )

37 / 52

http://lemon-model.net


clld and Linked Data: the 5th star

I Glottolog as hub in the CLLD Linked Data cloud:
I language catalog (linking in turn to lexvo, dbpedia, etc.),

iso639-3 is often not sufficient.
I shared bibliography

I WOLD as catalog for comparison meanings
(cf. Leipzig-Jakarta list) – a concepticon, or an ontology.

I PHOIBLE may play such a role for phonological segments,
e.g. as reference for transcriptions.

I filling in blanks: Identify phonological descriptions for
lanfuages missing in PHOIBLE by inspecting Glottolog.

I fill in missing values in WALS for phonological features by
looking up PHOIBLE.

38 / 52



clld and Linked Data: A workflow for research based
on CLLD data

1. Identify suitable datasets.

2. Aggregate the data in a triple store (crawling/importing
dumps).

3. Filter data in the triple store (using provenance information,
etc.).

4. Export data to suitable format for analysis.

I CLLD and Linked Data will mainly play a role during
aggregation of raw data.

39 / 52



clld utilities: Versioning/updating/preservation

Several models are possible:
I versioned data in database
I only current data in database, archived older versions

(ZENODO)
I updates via database migration scripts (versioned together

with the software)

40 / 52



clld utilities: SAILS archived with ZENODO

Figure 9: Archiving SAILS with ZENODO means longterm
preservation and better citeability via DOI.

41 / 52



Standardization the Microsoft way?

I As demonstrated above, a standard software stack is
useful.

I But software has a half-life of less than 10 years.
I Next step is essential: extract a domain specific API

which can become standard.
I Linked Data is still lacking in domain specificity.
I Domain specific means semantic interoperability of

linguistic concepts.

42 / 52



Towards a domain specific API: Decoupling database
from visualization/analysis

I for OLAC there’s OAI-PMH
I for mapping (i.e. leaflet, tilemill) there’s GeoJSON
I but then there’s RefLex
I and http://phonotactics.anu.edu.au/
I and the WALS Sunburst explorer
I . . .

43 / 52



clld databases on OLAC

Figure 10: 3 out of the top-ten of OLAC archives by number of distinct
languages are based on CLLD datasets.

44 / 52



Visualization: Phonotactics

Figure 11: Configurable visualization of phonotactic features of the
world’s languages.

45 / 52



Visualization: WALS Sunburst Explorer

Figure 12: Combined visualization of geolocation, genealogy and
coding for a WALS feature.

46 / 52



Semantic interoperability
I Being able to evaluate provenance data during the

aggregation of a dataset is useful (e.g. in the ASJP project,
some sources of wordlists are regarded as less trustworthy
than others).

I Unambiguous identification of languages is required;
Glottolog will help with that.

I Being able to answer the question “which data do we have
on a selected sample of languages?” as well as

I “what sample of languages can we investigate given we
need a certain selection of data (lexical, structural, etc.)?”

I For lexical data lemon can help to interpret the raw data,
i.e. matching senses across languages (cf. Moran and
Brümmer 2013).

I The requirements of statistical methods may lead to a
standardisation of structural language parameters
(features in the WALS sense), but we are not there yet.

47 / 52



Semantic interoperability: Language identification

The languages described in APiCS and eWAVE show that
iso639-3 is insufficient for language identification.

48 / 52



Semantic interoperability: Limitations

I Generally, useful data formats will be dictated by the needs
of the analysis tools (e.g. phylogenetic software),

I so doing analyses directly on the RDF model can not be
expected.

I Example APiCS: Interoperability of typological resources is
hampered by the difficulty of cross-linguistic categories.

49 / 52



Semantic interoperability: APiCS and WALS

Figure 13: APiCS feature Polar questions – original and WALSified.
50 / 52



Towards a domain specific API

Roadmap:

1. ”standardize” on software
2. determine what a proper API would look like (right now!)

I collect use cases,
I implement prototypes,

3. specify API – maybe ontologies, maybe RDF models,
maybe ling-JSON . . .

51 / 52



http://clld.org

Thank you!

52 / 52


	The CLLD project
	The clld toolkit
	The data model
	ROA, REST and …
	…Linked Data
	Versioning, updating, preservation

	Towards a domain specific API
	Decoupling database and visualization
	Semantic interoperability


