
Glottolog 3.0
A collaborative, versioned catalog of languages and di-
alects

Robert Forkel
Poznan, 2016-09-15, A new era for cross-linguistic databases

Max Planck Institute for the Science of Human History

Outline

1. Glottolog

2. Open Source and Open Data

3. Glottolog and collaboration

2

Glottolog

What is Glottolog?

Glottolog is a comprehensive online catalog of languages.

• but also of dialects (less comprehensive, though)
• and a bibliography, linked to languages
• and a genealogical classification of languages

4

http://glottolog.org

5

Why not Ethnologue or ISO 639-3?

So Glottolog is very much like Ethnologue. Why another one?

• The editorial process of Ethnologue is not fully transparent, the
change request process for ISO 639-3 is slow.

• Ethnologue is behind a paywall, ISO 639-3 not fully integrated in
the web at large and the semantic web in particular.

• Ethnologue and ISO 639-3 are not really targeted at academia,
they have a different business model.

Glottolog wants to provide data like Ethnologue, but curated in a
more transparent, collaborative, community owned way.

6

Open Source and Open Data

Software development and data curation

So, why are we looking at Open Source software
development best practices to improve management of
research data like Glottolog?

8

Open Source collaboration

Open Source software in the age of GitHub is a tremendous success
story for worldwide online collaboration.

This is exactly the kind of collaboration we want to enable for data
sets like Glottolog, which clearly

• profit from more curators
given enough eyeballs, all bugs are shallow (Linus’
Law)

• ”belong” to the academic community more than to any one
institution, thus – given current funding schemes – will have to
be transferred to a different owner at some point.

9

https://en.wikipedia.org/wiki/Linus%27s_Law
https://en.wikipedia.org/wiki/Linus%27s_Law

What spurred this surge in collaboration on Open Source
software?

Remember: Licenses grant rights people wouldn’t ususally have!

Open Licenses which allow derived works are the basis of Open
Source:

The ability to create derived works means that anyone can
also modify the source or data as they see fit. In practice
this means forking: creating a new custom version of some
software, or a modified (corrected, reformatted) version of a
dataset. (Leigh Dodds)

10

https://blog.ldodds.com/2016/03/24/a-key-difference-between-open-data-and-open-source/

Infrastructure for Open Source development

The default practice in the open source world is that code
will be:
• published in a public repository
• published with a complete version history […]
• published in an environment that supports transparent
reporting of issues, bugs and suggestions

• published in an environment that includes good
documentation tools, such as a wiki

• and, most importantly, published in an environment
that allows forks and improvements to be folded back
into the original project

I’d go as far as suggesting that each of these are as
important to our modern experience and expectations of
open source, as the basic rights granted by open licences.

(Leigh Dodds)
11

https://blog.ldodds.com/2016/03/24/a-key-difference-between-open-data-and-open-source/

Research data curation on GitHub

Today, this infrastructure is GitHub.

12

Research data curation on GitHub: An example

Figure 1: The data behind the Open Tree of Life is curated in a series of
GitHub repositories

13

https://tree.opentreeoflife.org/
https://github.com/OpenTreeOfLife
https://github.com/OpenTreeOfLife

How do we turn Glottolog into Open Data?

We need to model Glottolog data in a way suitable for distributed
version control systems.

• line-based text formats, i.e. text that can be meaningfully
handled by diff

• BibTEXfor bibliography files
• INI files for languoid metadata.
• A directory tree to model the classification.
• Some tools to simplify manipulation of the language tree.
• An API to access the data in the repository programmatically.

14

https://en.wikipedia.org/wiki/Diff_utility
https://en.wikipedia.org/wiki/INI_file

clld/glottolog: BibTEX

@book{94863,
address = {New York},
author = {Sapir, Edward},
publisher = {Harcourt and Brace},
title = {Language},
year = {1949},
bibtexkey = {sapir_language1949},
inlg = {English [eng]},
macro_area = {Africa},
src = {wals},
srctrickle = {wals#5298}

}

Listing 1: BibTEX is used for reference data.

15

clld/glottolog: Why BibTEX?

• Well supported in many bibliography management tools like
• Zotero
• jabref

• Our workflow is already adapted to it
• The (missing) details in the data model – e.g. no splitting of
authors – align well with our messy data.

• We only use BibTEX as container format – no LATEX in field values,
but UTF-8 encoded text.

16

clld/glottolog: INI files

-*- coding: utf-8 -*-
[core]
name = Abinomn
glottocode = abin1243
hid = bsa
level = language
iso639-3 = bsa
latitude = -2.92281
longitude = 138.891
macroareas =

Papunesia
countries =

Indonesia (ID)

[sources]
glottolog =

Mark Donohue and Simon Musgrave 2007 (89329)

Listing 2: INI files are used for metadata on languoids.

17

clld/glottolog: Why INI files?

• Good support (e.g. syntax highlighting) in many text editors.
• The programming language Python supports reading and writing
INI files out-of-the-box.

• Format is extensible – new sections and options can be added
any time without disrupting the processing pipeline.

18

clld/glottolog: File-System Hierarchy

$ tree --charset ASCII languoids/tree/abkh1242/abkh1243/
abkh1244/

languoids/tree/abkh1242/abkh1243/abkh1244/
|-- abkh1244.ini
|-- abzh1238
| `-- abzh1238.ini
|-- bzyb1238
| `-- bzyb1238.ini
`-- samu1242

`-- samu1242.ini

3 directories, 4 files

Listing 3: A directory tree is used to model the language classification.

19

Glottolog and collaboration

The GitHub workflow

fork Create your own copy of the data repository. The
repository you forked from is also called upstream.

edit Change the data in your copy.
commit Register meaningful groups of changes in your copy.

pull request Propose merging your changes into upstream, i.e.
clld/glottolog.

merge Incorporate changes from other forks of the repository.

21

Use cases: Transfer of ownership

Forks are essential for the open source software development model
for another reason as well:

They allow for seamless transfer of ownership of codebases.

For Glottolog this means

• the data repository can be forked - any fork is as good as the
original repos

• the code for the web application has an open license, can be
run anywhere, and ingest data from any fork

• the only thing bound to an institution that has to be explicitly
transferred (with consent of the owner) is the domain name
glottolog.org

22

Use cases: Functionality built on the repository

Functionality built on top of the repository – rather than on top of
the web application

• reduces traffic at glottolog.org
• works off-line
• works for forks, too
• thus, local changes can be incorporated in workflows right away

23

Use cases: Add ”your” language

Working on varieties which are not in Glottolog?

• mint Glottocodes (using functionality built on top of the
repository)

• add languoids to your fork of the repository
• use ”your” Glottocodes in your data …
• …while waiting for ”upstream” to incorporate your changes.

24

Forks

What happens when your changes are not accepted and merged into
upstream?

• You either discard your changes, revert back to the status before
and keep in synch with upstream;

• or you keep your changes,
• and keep merging changes from upstream, resolving any conflicts
resulting from your changes locally

• or try to convince the community that your fork should become
the new upstream repository (the ”traditional meaning of fork in
Open Source software development”).

25

Example: Changing a language name – fork

26

Example: Changing a language name – edit

27

Example: Changing a language name – commit

28

Example: Changing a language name – pull request

29

Example: Changing a language name – pull request

30

Example: Changing a language name – pull request

31

Example: Changing a language name – merge

32

Example: Reviewing pull requests

33

Example: Reclassifying Dogon

More complex changes – such as re-arranging the classification of a
subgroup or whole language family – typically

• start out as issues
• which can be discussed
• and eventually may lead to pull requests
• issues can easily be referenced in

• commit messages
• pull request descriptions

34

Example: Reclassifying Dogon

35

Collaborate!

https://github.com/clld/glottolog

36

	Glottolog
	Open Source and Open Data
	Open Licenses
	Infrastructure
	Glottolog as Open Data

	Glottolog and collaboration
	Simple things should be simple …
	…complex things should be possible

